Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation.
نویسندگان
چکیده
Inhibition of glycogen synthase kinase (GSK)-3 reduces ischemia/reperfusion injury by mechanisms that involve the mitochondria. The goal of this study was to explore possible molecular targets and mechanistic basis of this cardioprotective effect. In perfused rat hearts, treatment with GSK inhibitors before ischemia significantly improved recovery of function. To assess the effect of GSK inhibitors on mitochondrial function under ischemic conditions, mitochondria were isolated from rat hearts perfused with GSK inhibitors and were treated with uncoupler or cyanide or were made anoxic. GSK inhibition slowed ATP consumption under these conditions, which could be attributable to inhibition of ATP entry into the mitochondria through the voltage-dependent anion channel (VDAC) and/or adenine nucleotide transporter (ANT) or to inhibition of the F(1)F(0)-ATPase. To determine the site of the inhibitory effect on ATP consumption, we measured the conversion of ADP to AMP by adenylate kinase located in the intermembrane space. This assay requires adenine nucleotide transport across the outer but not the inner mitochondrial membrane, and we found that GSK inhibitors slow AMP production similar to their effect on ATP consumption. This suggests that GSK inhibitors are acting on outer mitochondrial membrane transport. In sonicated mitochondria, GSK inhibition had no effect on ATP consumption or AMP production. In intact mitochondria, cyclosporin A had no effect, indicating that ATP consumption is not caused by opening of the mitochondrial permeability transition pore. Because GSK is a kinase, we assessed whether protein phosphorylation might be involved. Therefore, we performed Western blot and 1D/2D gel phosphorylation site analysis using phos-tag staining to indicate proteins that had decreased phosphorylation in hearts treated with GSK inhibitors. Liquid chromatographic-mass spectrometric analysis revealed 1 of these proteins to be VDAC2. Taken together, we found that GSK-mediated signaling modulates transport through the outer membrane of the mitochondria. Both proteomics and adenine nucleotide transport data suggest that GSK regulates VDAC and that VDAC may be an important regulatory site in ischemia/reperfusion injury.
منابع مشابه
Role of Glycogen Synthase Kinase-3 in Cardioprotection
Limitation of infarct size by ischemic/pharmacological preand postconditioning involves activation of a complex set of cell-signaling pathways. Multiple lines of evidence implicate the mitochondrial permeability transition pore (mPTP) as a key end effector of ischemic/pharmacological preand postconditioning. Increasing the ROS threshold for mPTP induction enhances the resistance of cardiomyocyt...
متن کاملPhosphorylation of Voltage-Dependent Anion Channel by Serine/Threonine Kinases Governs Its Interaction with Tubulin
Tubulin was recently found to be a uniquely potent regulator of the voltage-dependent anion channel (VDAC), the most abundant channel of the mitochondrial outer membrane, which constitutes a major pathway for ATP/ADP and other metabolites across this membrane. Dimeric tubulin induces reversible blockage of VDAC reconstituted into a planar lipid membrane and dramatically reduces respiration of i...
متن کاملGlycogen synthase kinase 3-mediated voltage-dependent anion channel phosphorylation controls outer mitochondrial membrane permeability during lipid accumulation.
UNLABELLED Nonalcoholic steatosis is a liver pathology characterized by fat accumulation and severe metabolic alterations involving early mitochondrial impairment and late hepatocyte cell death. However, mitochondrial dysfunction mechanisms remain elusive. Using four models of nonalcoholic steatosis, i.e., livers from patients with fatty liver disease, ob/ob mice, mice fed a high-fat diet, and ...
متن کاملFree tubulin modulates mitochondrial membrane potential in cancer cells.
Formation of the mitochondrial membrane potential (ΔΨ) depends on flux of respiratory substrates, ATP, ADP, and Pi through voltage-dependent anion channels (VDAC). As tubulin promotes single-channel closure of VDAC, we hypothesized that tubulin is a dynamic regulator of ΔΨ, which in cultured cancer cells was assessed by confocal microscopy of the potential-indicating fluorophore tetramethylrhod...
متن کاملPlant Natural Product Formononetin Protects Rat Cardiomyocyte H9c2 Cells against Oxygen Glucose Deprivation and Reoxygenation via Inhibiting ROS Formation and Promoting GSK-3β Phosphorylation.
The opening of mitochondrial permeability transition pore (mPTP) is a major cause of cell death in ischemia reperfusion injury. Based on our pilot experiments, plant natural product formononetin enhanced the survival of rat cardiomyocyte H9c2 cells during oxygen glucose deprivation (OGD) and reoxygenation. For mechanistic studies, we focused on two major cellular factors, namely, reactive oxyge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 103 9 شماره
صفحات -
تاریخ انتشار 2008